Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1427: 195-201, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37322350

RESUMO

Ventilatory impairment during aging has been linked to carotid body (CB) dysfunction. Anatomical/morphological studies evidenced CB degeneration and reductions in the number of CB chemoreceptor cells during aging. The mechanism(s) related to CB degeneration in aging remains elusive. Programmed cell death encompasses both apoptosis and necroptosis. Interestingly, necroptosis can be driven by molecular pathways related to low-grade inflammation, one hallmark of the aging process. Accordingly, we hypothesized that necrotic cell death dependent on receptor-interacting protein kinase-3 (RIPK3) may contribute, at least in part, to impair CB function during aging. Adult (3 months) and aged (24 months) wild type (WT) and RIPK3-/- mice were used to study chemoreflex function. Aging results in significant reductions in both the hypoxic (HVR) and hypercapnic ventilatory responses (HCVR). Adult RIPK3-/- mice showed normal HVR and HCVR compared to adult WT mice. Remarkable, aged RIPK3-/- mice displayed no reductions in HVR nor in HCVR. Indeed, chemoreflex responses obtained in aged RIPK3-/- KO mice were undistinguishable from the ones obtained in adult WT mice. Lastly, we found high prevalence of breathing disorders during aging and this was absent in aged RIPK3-/- mice. Together our results support a role for RIPK3-mediated necroptosis in CB dysfunction during aging.


Assuntos
Corpo Carotídeo , Camundongos , Animais , Corpo Carotídeo/fisiologia , Apoptose , Necrose , Células Quimiorreceptoras/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Envelhecimento , Hipercapnia
2.
Cell Mol Neurobiol ; 43(6): 2801-2813, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36680690

RESUMO

Vagus nerve innervates several organs including the heart, stomach, and pancreas among others. Somas of sensory neurons that project through the vagal nerve are located in the nodose ganglion. The presence of purinergic receptors has been reported in neurons and satellite glial cells in several sensory ganglia. In the nodose ganglion, calcium depletion-induced increases in neuron activity can be partly reversed by P2X7 blockers applied directly into the ganglion. The later suggest a possible role of P2X7 receptors in the modulation of neuronal activity within this sensory ganglion. We aimed to characterize the response to P2X7 activation in nodose ganglion neurons under physiological conditions. Using an ex vivo preparation for electrophysiological recordings of the neural discharges of nodose ganglion neurons, we found that treatments with ATP induce transient neuronal activity increases. Also, we found a concentration-dependent increase in neural activity in response to Bz-ATP (ED50 = 0.62 mM, a selective P2X7 receptor agonist), with a clear desensitization pattern when applied every ~ 30 s. Electrophysiological recordings from isolated nodose ganglion neurons reveal no differences in the responses to Bz-ATP and ATP. Finally, we showed that the P2X7 receptor was expressed in the rat nodose ganglion, both in neurons and satellite glial cells. Additionally, a P2X7 receptor negative allosteric modulator decreased the duration of Bz-ATP-induced maximal responses without affecting their amplitude. Our results show the presence of functional P2X7 receptors under physiological conditions within the nodose ganglion of the rat, and suggest that ATP modulation of nodose ganglion activity may be in part mediated by the activation of P2X7 receptors.


Assuntos
Gânglio Nodoso , Receptores Purinérgicos P2X7 , Ratos , Animais , Gânglio Nodoso/fisiologia , Nervo Vago/fisiologia , Trifosfato de Adenosina/farmacologia , Células Receptoras Sensoriais
3.
Physiology (Bethesda) ; 37(3): 128-140, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866399

RESUMO

Emergent evidence indicates that the carotid body (CB) chemoreceptor may sense systemic inflammatory molecules and is an afferent arm of the anti-inflammatory reflex. Moreover, a proinflammatory milieu within the CB is involved in the enhanced CB chemosensory responsiveness to oxygen following sustained and intermittent hypoxia. In this review, we focus on the physiopathological participation of CBs in inflammatory diseases, such as sepsis and intermittent hypoxia.


Assuntos
Corpo Carotídeo , Anti-Inflamatórios/uso terapêutico , Humanos , Hipóxia/patologia , Inflamação/patologia , Reflexo
4.
Physiol Rev ; 101(3): 1177-1235, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33570461

RESUMO

The carotid body (CB) is the main peripheral chemoreceptor for arterial respiratory gases O2 and CO2 and pH, eliciting reflex ventilatory, cardiovascular, and humoral responses to maintain homeostasis. This review examines the fundamental biology underlying CB chemoreceptor function, its contribution to integrated physiological responses, and its role in maintaining health and potentiating disease. Emphasis is placed on 1) transduction mechanisms in chemoreceptor (type I) cells, highlighting the role played by the hypoxic inhibition of O2-dependent K+ channels and mitochondrial oxidative metabolism, and their modification by intracellular molecules and other ion channels; 2) synaptic mechanisms linking type I cells and petrosal nerve terminals, focusing on the role played by the main proposed transmitters and modulatory gases, and the participation of glial cells in regulation of the chemosensory process; 3) integrated reflex responses to CB activation, emphasizing that the responses differ dramatically depending on the nature of the physiological, pathological, or environmental challenges, and the interactions of the chemoreceptor reflex with other reflexes in optimizing oxygen delivery to the tissues; and 4) the contribution of enhanced CB chemosensory discharge to autonomic and cardiorespiratory pathophysiology in obstructive sleep apnea, congestive heart failure, resistant hypertension, and metabolic diseases and how modulation of enhanced CB reactivity in disease conditions may attenuate pathophysiology.


Assuntos
Sistema Nervoso Autônomo/metabolismo , Corpo Carotídeo/metabolismo , Células Quimiorreceptoras/metabolismo , Hipóxia/metabolismo , Animais , Sistema Cardiovascular/metabolismo , Humanos
5.
J Hypertens ; 39(6): 1125-1133, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33560061

RESUMO

BACKGROUND AND OBJECTIVE: Chronic intermittent hypoxia (CIH), one of the main features of obstructive sleep apnea (OSA), enhances carotid body-mediated chemoreflex and induces hypertension and breathing disorders. The carbamylated form of erythropoietin (cEpo) may have beneficial effects as it retains its antioxidant/anti-inflammatory and neuroprotective profile without increasing red blood cells number. However, no studies have evaluated the potential therapeutic effect of cEpo on CIH-related cardiorespiratory disorders. We aimed to determine whether cEpo normalized the CIH-enhanced carotid body ventilatory chemoreflex, the hypertension and ventilatory disorders in rats. METHODS: Male Sprague-Dawley rats (250 g) were exposed to CIH (5% O2, 12/h, 8 h/day) for 28 days. cEPO (20 µg/kg, i.p) was administrated from day 21 every other day for one more week. Cardiovascular and respiratory function were assessed in freely moving animals. RESULTS: Twenty-one days of CIH increased carotid body-mediated chemoreflex responses as evidenced by a significant increase in the hypoxic ventilatory response (FiO2 10%) and triggered irregular eupneic breathing, active expiration, and produced hypertension. cEpo treatment significantly reduced the carotid body--chemoreflex responses, normalizes breathing patterns and the hypertension in CIH. In addition, cEpo treatment effectively normalized carotid body chemosensory responses evoked by acute hypoxic stimulation in CIH rats. CONCLUSION: Present results strongly support beneficial cardiorespiratory therapeutic effects of cEpo during CIH exposure.


Assuntos
Eritropoetina , Síndromes da Apneia do Sono , Animais , Humanos , Hipóxia , Masculino , Ratos , Ratos Sprague-Dawley , Respiração , Síndromes da Apneia do Sono/tratamento farmacológico
6.
Clin Sci (Lond) ; 133(3): 393-405, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30626730

RESUMO

Activation of the sympathetic nervous system is a hallmark of heart failure (HF) and is positively correlated with disease progression. Catecholaminergic (C1) neurons located in the rostral ventrolateral medulla (RVLM) are known to modulate sympathetic outflow and are hyperactivated in volume overload HF. However, there is no conclusive evidence showing a contribution of RVLM-C1 neurons to the development of cardiac dysfunction in the setting of HF. Therefore, the aim of this study was to determine the role of RVLM-C1 neurons in cardiac autonomic control and deterioration of cardiac function in HF rats. A surgical arteriovenous shunt was created in adult male Sprague-Dawley rats to induce HF. RVLM-C1 neurons were selectively ablated using cell-specific immunotoxin (dopamine-ß hydroxylase saporin [DßH-SAP]) and measures of cardiac autonomic tone, function, and arrhythmia incidence were evaluated. Cardiac autonomic imbalance, arrhythmogenesis and cardiac dysfunction were present in HF rats and improved after DßH-SAP toxin treatment. Most importantly, the progressive decline in fractional shortening observed in HF rats was reduced by DßH-SAP toxin. Our results unveil a pivotal role played by RVLM-C1 neurons in cardiac autonomic imbalance, arrhythmogenesis and cardiac dysfunction in volume overload-induced HF.


Assuntos
Tronco Encefálico/citologia , Insuficiência Cardíaca/fisiopatologia , Coração/fisiologia , Neurônios/fisiologia , Animais , Sistema Nervoso Autônomo/fisiopatologia , Tronco Encefálico/fisiopatologia , Humanos , Masculino , Bulbo/citologia , Ratos , Ratos Sprague-Dawley , Sistema Nervoso Simpático/fisiopatologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-30593828

RESUMO

Triadimefon (TDF) is a triazole fungicide extensively used in agriculture that has been found as a pollutant in numerous water sources. In mammals, it inhibits monoamine uptake through binding to the dopamine transporter, with a mechanism of action similar to cocaine, resulting in higher levels of dopamine at the synapse. Dopamine is a neurotransmitter involved in a broad spectrum of processes such as locomotion, cognition, reward, and mental disorders. In this work we have studied, for the first time, the effects of TDF on behavior of both larval and adult zebrafish and its connection with changes in the dopaminergic and serotonergic systems. We evaluated the acute exposure of 5 dpf larvae to different concentrations of TDF, ranging from 5 mg/L to 35 mg/L. The lowest concentration does not alter neither locomotor activity nor dopamine levels but produced changes in the expression of two genes, tyrosine hydroxylase 1 (th1) and dopamine transporter (dat). Besides, it induced a reduction in extracellular serotonin and had an anxiolytic-like effect, supported by a decrease in cortisol production. On the other hand, a high concentration of TDF produced a dose-dependent reduction in locomotion, which was reversed or enhanced by D1 (SCH-23390) or D2 (Haloperidol) dopamine receptor antagonists, respectively. Using in vivo electrochemistry, we show that these changes could be associated with higher levels of dopamine in the brain. Thus, in adult zebrafish, though not in larvae, TDF exposure increases locomotor activity, anxiety and aggressiveness, which coincides with the behaviors observed in mammals.


Assuntos
Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Serotonina/metabolismo , Triazóis/toxicidade , Agressão/efeitos dos fármacos , Agressão/fisiologia , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Benzazepinas/farmacologia , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica/efeitos dos fármacos , Haloperidol/farmacologia , Hidrocortisona/metabolismo , Larva , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Poluentes da Água/toxicidade , Peixe-Zebra
8.
Biol Res ; 51(1): 57, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30572940

RESUMO

BACKGROUND: chronic hypoxia increases basal ventilation and pulmonary vascular resistance, with variable changes in arterial blood pressure and heart rate, but it's impact on heart rate variability and autonomic regulation have been less well examined. We studied changes in arterial blood pressure, heart rate and heart rate variability (HRV) in rabbits subjected to chronic normobaric hypoxia (CNH; PB ~ 719 mmHg; FIO2 ~ 9.2%) for 14 days and assess the effect of autonomic control by acute bilateral vagal denervation. RESULTS: exposure to CNH stalled animal weight gain and increased the hematocrit, without affecting heart rate or arterial blood pressure. Nevertheless, Poincaré plots of the electrocardiographic R-R intervals showed a reduced distribution parallel to the line of identity, which interpreted as reduced long-term HRV. In the frequency domain, CNH reduced the very-low- (< 0.2 Hz) and high-frequency components (> 0.8 Hz) of the R-R spectrograms and produced a prominent component in the low-frequency component (0.2-0.5 Hz) of the power spectrum. In control and CNH exposed rabbits, bilateral vagotomy had no apparent effect on the short- and long-term HRV in the Poincaré plots. However, bilateral vagotomy differentially affected higher-frequency components (> 0.8 Hz); reducing it in control animals without modifying it in CNH-exposed rabbits. CONCLUSIONS: These results suggest that CNH exposure shifts the autonomic balance of heart rate towards a sympathetic predominance without modifying resting heart rate or arterial blood pressure.


Assuntos
Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Hipóxia/fisiopatologia , Vagotomia , Animais , Glicemia/fisiologia , Peso Corporal/fisiologia , Doença Crônica , Modelos Animais de Doenças , Hematócrito , Masculino , Coelhos
9.
Adv Exp Med Biol ; 1071: 61-68, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357734

RESUMO

The carotid body (CB) is the main arterial chemoreceptor involved in oxygen sensing. Upon hypoxic stimulation, CB chemoreceptor cells release neurotransmitters, which increase the frequency of action potentials in sensory nerve fibers of the carotid sinus nerve. The identity of the molecular entity responsible for oxygen sensing is still a matter of debate; however several ion channels have been shown to be involved in this process. Connexin-based ion channels are expressed in the CB; however a definitive role for these channels in mediating CB oxygen sensitivity has not been established. To address the role of these channels, we studied the effect of blockers of connexin-based ion channels on oxygen sensitivity of the CB. A connexin43 (Cx43) hemichannel blocking agent (CHBa) was applied topically to the CB and the CB-mediated hypoxic ventilatory response (FiO2 21, 15, 10 and 5%) was measured in adult male Sprague-Dawley rats (~250 g). In normoxic conditions, CHBa had no effect on tidal volume or respiratory rate, however Cx43 hemichannels inhibition by CHBa significantly impaired the CB-mediated chemoreflex response to hypoxia. CHBa reduced both the gain of the hypoxic ventilatory response (HVR) and the maximum HVR by ~25% and ~50%, respectively. Our results suggest that connexin43 hemichannels contribute to the CB chemoreflex response to hypoxia in rats. Our results suggest that CB connexin43 hemichannels may be pharmacological targets in disease conditions characterized by CB hyperactivity.


Assuntos
Corpo Carotídeo/fisiologia , Conexina 43/antagonistas & inibidores , Hipóxia , Animais , Conexina 43/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
10.
Adv Exp Med Biol ; 1071: 95-102, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357739

RESUMO

The carotid body (CB) chemoreceptors sense changes in arterial blood gases. Upon stimulation CB chemoreceptors cells release one or more transmitters to excite sensory nerve fibers of the carotid sinus nerve. While several neurotransmitters have been described to contribute to the CB chemosensory process less is known about modulatory molecules. Recent data suggest that erythropoietin (Epo) is involved in the control of ventilation, and it has been shown that Epo receptor is constitutively expressed in the CB chemoreceptors, suggesting a possible role for Epo in regulation of CB function. Therefore, in the present study we aimed to determine whether exogenous applications of Epo modulate the hypoxic and hypercapnic CB chemosensory responses. Carotid sinus nerve discharge was recorded in-situ from anesthetized adult male and female Sprague Dawley rats (350 g, n = 8) before and after systemic administration of Epo (2000 UI/kg). CB-chemosensitivity to hypoxia and hypercapnia was calculated by exposing the rat to FiO2 5-15% and FiCO2 10% gas mixtures, respectively. During baseline recordings at normoxia, we found no effects of Epo on CB activity both in male and female rats. In addition, Epo had no effect on maximal CB response to hypoxia in both male and female rats. Epo injections enhanced the maximum CB chemosensory response to hypercapnia in female rats (before vs. after Epo, 72.5 ± 7.1 Hz vs. 108.3 ± 6.9 Hz, p < 0.05). In contrast, Epo had no effect on maximum CB chemosensory response to hypercapnia in male rats but significantly increased the response recovery times (time required to return to baseline discharge following hypercapnic stimulus) from 2.1 ± 0.1 s to 8.2 ± 2.3 s (p < 0.05). Taken together, our results suggest that Epo has some modulatory effect on the CB chemosensory response to hypercapnia.


Assuntos
Corpo Carotídeo/fisiologia , Células Quimiorreceptoras/fisiologia , Eritropoetina/farmacologia , Hipercapnia/fisiopatologia , Hipóxia/fisiopatologia , Animais , Feminino , Masculino , Ratos , Ratos Sprague-Dawley
11.
Front Physiol ; 9: 1791, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618804

RESUMO

Chronic hypoxia has been postulated as one of the mechanisms involved in salt-sensitive hypertension and chronic kidney disease (CKD). Kidneys have a critical role in the regulation of arterial blood pressure through vasoactive systems, such as the renin-angiotensin and the kallikrein-kinin systems, with the angiotensin-converting enzyme (ACE) and kallikrein being two of the main enzymes that produce angiotensin II and bradykinin, respectively. Neutral endopeptidase 24.11 or neprilysin is another enzyme that among its functions degrade vasoactive peptides including angiotensin II and bradykinin, and generate angiotensin 1-7. On the other hand, the kidneys are vulnerable to hypoxic injury due to the active electrolyte transportation that requires a high oxygen consumption; however, the oxygen supply is limited in the medullary regions for anatomical reasons. With the hypothesis that the chronic reduction of oxygen under normobaric conditions would impact renal vasoactive enzyme components and, therefore; alter the normal balance of the vasoactive systems, we exposed male Sprague-Dawley rats to normobaric hypoxia (10% O2) for 2 weeks. We then processed renal tissue to identify the expression and distribution of kallikrein, ACE and neutral endopeptidase 24.11 as well as markers of kidney damage. We found that chronic hypoxia produced focal damage in the kidney, mainly in the cortico-medullary region, and increased the expression of osteopontin. Moreover, we observed an increase of ACE protein in the brush border of proximal tubules at the outer medullary region, with increased mRNA levels. Kallikrein abundance did not change significantly with hypoxia, but a tendency toward reduction was observed at protein and mRNA levels. Neutral endopeptidase 24.11 was localized in proximal tubules, and was abundantly expressed under normoxic conditions, which markedly decreased both at protein and mRNA levels with chronic hypoxia. Taken together, our results suggest that chronic hypoxia produces focal kidney damage along with an imbalance of key components of the renal vasoactive system, which could be the initial steps for a long-term contribution to salt-sensitive hypertension and CKD.

12.
Biol. Res ; 51: 57, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1011401

RESUMO

BACKGROUND: chronic hypoxia increases basal ventilation and pulmonary vascular resistance, with variable changes in arterial blood pressure and heart rate, but it's impact on heart rate variability and autonomic regulation have been less well examined. We studied changes in arterial blood pressure, heart rate and heart rate variability (HRV) in rabbits subjected to chronic normobaric hypoxia (CNH; PB ~ 719 mmHg; FIO2 ~ 9.2%) for 14 days and assess the effect of autonomic control by acute bilateral vagal denervation. RESULTS: exposure to CNH stalled animal weight gain and increased the hematocrit, without affecting heart rate or arterial blood pressure. Nevertheless, Poincaré plots of the electrocardiographic R-R intervals showed a reduced distribution parallel to the line of identity, which interpreted as reduced long-term HRV. In the frequency domain, CNH reduced the very-low- (< 0.2 Hz) and high-frequency components (> 0.8 Hz) of the R-R spectrograms and produced a prominent component in the low-frequency component (0.2-0.5 Hz) of the power spectrum. In control and CNH exposed rabbits, bilateral vagotomy had no apparent effect on the short- and long-term HRV in the Poincaré plots. However, bilateral vagotomy differentially affected higher-frequency components (> 0.8 Hz); reducing it in control animals without modifying it in CNH-exposed rabbits. CONCLUSIONS: These results suggest that CNH exposure shifts the autonomic balance of heart rate towards a sympathetic predominance without modifying resting heart rate or arterial blood pressure.


Assuntos
Animais , Masculino , Coelhos , Vagotomia , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Hipóxia/fisiopatologia , Glicemia/fisiologia , Peso Corporal/fisiologia , Doença Crônica , Modelos Animais de Doenças , Hematócrito
13.
Front Mol Neurosci ; 10: 374, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29200997

RESUMO

In this review article, we summarize the current insight on the role of Connexin- and Pannexin-based channels as modulators of sensory neurons. The somas of sensory neurons are located in sensory ganglia (i.e., trigeminal and nodose ganglia). It is well known that within sensory ganglia, sensory neurons do not form neither electrical nor chemical synapses. One of the reasons for this is that each soma is surrounded by glial cells, known as satellite glial cells (SGCs). Recent evidence shows that connexin43 (Cx43) hemichannels and probably pannexons located at SGCs have an important role in paracrine communication between glial cells and sensory neurons. This communication may be exerted via the release of bioactive molecules from SGCs and their subsequent action on receptors located at the soma of sensory neurons. The glio-neuronal communication seems to be relevant for the establishment of chronic pain, hyperalgesia and pathologies associated with tissue inflammation. Based on the current literature, it is possible to propose that Cx43 hemichannels expressed in SGCs could be a novel pharmacological target for treating chronic pain, which need to be directly evaluated in future studies.

14.
Front Cell Neurosci ; 11: 61, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28337126

RESUMO

Neurons from many brain regions display intrinsic subthreshold theta-resonance, responding preferentially to theta-frequency oscillatory stimuli. Resonance may contribute to selective communication among neurons and to orchestrate brain rhythms. CA1 pyramidal neurons receive theta activity, generating place fields. In these neurons the expression of perithreshold frequency preference is controversial, particularly in the spiking regime, with evidence favoring either non-resonant (integrator-like) or resonant behavior. Perithreshold dynamics depends on the persistent Na+ current INaP developing above -70 mV and the muscarine-sensitive K+ current IM activating above -60 mV. We conducted current and voltage clamp experiments in slices to investigate perithreshold excitability of CA1 neurons under oscillatory stimulation. Around 20% of neurons displayed perithreshold resonance that is expressed in spiking. The remaining neurons (~80%) acted as low-pass filters lacking frequency preference. Paired voltage clamp measurement of INaP and IM showed that perithreshold activation of IM is in general low while INaP is high enough to depolarize neurons toward threshold before resonance expression, explaining the most abundant non-resonant perithreshold behavior. Partial blockade of INaP by pharmacological tools or dynamic clamp changed non-resonant to resonant behavior. Furthermore, shifting IM activation toward hyperpolarized potentials by dynamic clamp also transformed non-resonant neurons into resonant ones. We propose that the relative levels of INaP and IM control perithreshold behavior of CA1 neurons constituting a gating mechanism for theta resonance in the spiking regime. Both currents are regulated by intracellular signaling and neuromodulators which may allow dynamic switching of perithreshold behavior between resonant and non-resonant.

15.
J Neurotrauma ; 34(9): 1803-1812, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27329506

RESUMO

Incomplete spinal cord injuries (iSCI) leave spared synaptic pathways below the level of injury. Intermittent hypoxia (IH) elicits plasticity in the spinal cord and strengthens spared synaptic pathways, expressed as respiratory and somatic functional recovery in experimental animals and humans with iSCI. This study is a randomized, triple-blind, two-arm parallel clinical trial performed in Santiago, Chile. We compared the effects of a 4-week protocol of IH combined with body weight-supported treadmill training (BWSTT), with continuous normoxia (Nx) and BWSTT on 10-meter walk test (10MWT), 6-minute walk test (6MWT), and timed up and go (TUG) test in American Spinal Injury Association C and D individuals with iSCI. Subjects received daily IH (cycling 9%/21% O2 every 1.5 min, 15 cycles/day) or continuous Nx (21% O2) combined with 45 min BWSTT for 5 consecutive days, followed by IH/Nx 3 × per week (3 × wIH/Nx) for 3 additional weeks. Subjects were assessed at day 5, weekly from weeks 2-4, and at a 2-week follow-up. Daily IH plus BWSTT enhanced walking speed, expressed as decreased 10MWT time at day 5 versus baseline (IH: -10.2 ± 3.0 vs. Nx: -1.7 ± 1.7 sec, p = 0.006), and walking endurance expressed as increased 6MWT distance at day 5 versus baseline (IH: 43.0 ± 10.7 vs. Nx: 6.1 ± 3.4 m, p = 0.012), but not TUG time. Further, 3 × wIH maintained the daily IH-induced walking speed, and enhanced the daily IH-induced walking endurance, which is maintained up to the 2-week follow-up. We conclude that daily IH enhances walking recovery in subjects with iSCI, confirming previous findings. Moreover, 3 × wIH prolonged or enhanced daily IH-induced walking speed and endurance improvements, respectively, up to 5 weeks post-daily IH. Repetitive IH may be a safe and effective therapeutic alternative for persons with iSCI.


Assuntos
Terapia por Exercício/métodos , Hipóxia , Traumatismos da Medula Espinal/reabilitação , Caminhada , Adulto , Idoso , Terapia por Exercício/efeitos adversos , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Plasticidade Neuronal , Segurança do Paciente , Resistência Física , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/fisiopatologia , Resultado do Tratamento , Adulto Jovem
16.
Arch Phys Med Rehabil ; 98(3): 415-424, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27702556

RESUMO

OBJECTIVE: To test the effect of combined intermittent hypoxia (IH) and body weight-supported treadmill training (BWSTT) on standing and dynamic balance in persons with incomplete spinal cord injury (iSCI). DESIGN: Randomized, triple-blind, placebo-controlled study. SETTING: Rehabilitation medical centers. PARTICIPANTS: Study participants (N=35) with chronic iSCI with American Spinal Injury Association grades C and D (>1y postinjury) were randomly assigned to either IH plus BWSTT (n=18) or continued normoxia (placebo) plus BWSTT protocol (n=17). INTERVENTIONS: Participants received either IH (alternating 1.5min 9% inspired O2 with 1.5min 21% inspired O2, 15 cycles per day) or continued normoxia (21% O2) combined with 45 minutes of BWSTT for 5 consecutive days, followed by 3 times per week IH or normoxia plus BWSTT, for 3 additional weeks. MAIN OUTCOME MEASURES: Standing balance (normalized jerk and root-mean-square [RMS]) and dynamic balance (turning duration, cadence in a turn, and turn-to-sit duration) were assessed before and after IH and normoxia protocol by means of instrumented sway and instrumented timed Up and Go test. RESULTS: There was no significant difference in standing balance between interventions for both normalized jerk and RMS instrumented sway components (both P>.05). There was a significantly faster cadence (P<.001), turning duration (P<.001), and turn-to-sit duration (P=.001) in subjects receiving IH plus BWSTT, compared with placebo. CONCLUSIONS: A 4-week protocol of IH combined with locomotor training improves dynamic, but not standing, balance in persons with iSCI.


Assuntos
Modalidades de Fisioterapia , Equilíbrio Postural/fisiologia , Traumatismos da Medula Espinal/reabilitação , Caminhada/fisiologia , Adulto , Idoso , Doença Crônica , Feminino , Marcha , Humanos , Masculino , Pessoa de Meia-Idade , Recuperação de Função Fisiológica , Adulto Jovem
17.
Brain Res ; 1649(Pt A): 38-43, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27553630

RESUMO

Ventilation is peripherally controlled by afferent activity arising from the peripheral chemoreceptors. In the rat, chemosensory activity is conveyed to the central nervous system through axons of neurons located in the nodose-petrosal-jugular-complex. These neurons have distinct electrophysiological properties, including a persistent Na+ current. Acute blockade of this current with phenytoin and other anti-epileptic drugs reduces normoxic chemosensory activity and responses to acute hypoxia. However, because anti-epileptic therapy is prolonged and there is no information on the effects of chronic phenytoin treatment on peripheral chemosensory activity, we studied the effects of long-lasting phenytoin treatment (~25 days) on afferent chemosensory activity, on a wide range of oxygen inspiratory fractions. Osmotic pumps containing dissolved phenytoin (166mg/mL) or vehicle (daily flow: 60µL) were implanted subcutaneously in male adult Sprague Dawley rats. At the end of the treatment, the animals were anesthetized and carotid sinus nerve activity was recorded in vivo. Afferent chemosensory activity in normoxia was not significantly different between control (71.2±2.2Hz) and phenytoin treated (95.4±2.1Hz) rats. In contrast, carotid body chemosensory responses to acute hypoxic challenges were markedly reduced in phenytoin treated rats, specifically in the lowest part of the hypoxic range (control 133.5±18.0Hz vs phenytoin treated 50.2±29.4, at 5% FIO2). Chronic phenytoin treatment severely impaired the chemosensory responses to acute hypoxia, suggesting that long-term phenytoin treatment in patients may result in a reduced peripheral respiratory drive together with a reduction in the respiratory responses to hypoxic challenges.

18.
Arch Clin Neuropsychol ; 31(4): 332-42, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27084733

RESUMO

There is a critical need for new therapeutic strategies to restore motor function in patients with spinal cord injuries (SCIs), without unwanted effects. Intermittent hypoxia (IH) induces plasticity in spared synaptic pathways to motor neurons below the level of injury, which can be harnessed to elicit motor recovery in incomplete SCI patients. However, there is conflicting evidence regarding the effects of IH on memory function. The aim of this study was to assess episodic verbal and visual memory function with the Complutense verbal learning test (TAVEC) and the Rey-Osterrieth Complex Figure Test (ROCF), respectively, before and after a 4-week protocol of repetitive IH combined with body weight-supported treadmill training (BWSTT) in incomplete ASIA C and D SCI subjects. Subjects received either IH (cycling 9%/21% FiO2 every 1.5 min, 15 cycles per day) or continued normoxia (Nx, 21% FiO2) combined with 45 min of BWSTT for 5 consecutive days, followed by 3 times per week IH and BWSTT for 3 additional weeks. ROCF Z scores between IH plus BWSTT and Nx plus BWSTT were not significantly different (p = .43). Compared with baseline, IH and BWSTT group showed a significantly greater (p < .05) verbal memory performance for immediate, short-term, and long-term recall; however, it was not different from Nx plus BWSTT group in all verbal memory components (p > .05). Our results suggest that a 4-week protocol of moderate IH does not elicit visual or verbal memory impairment. Thus, repetitive IH may be a safe therapeutic approach to incomplete spinal cord injury patients, without deleterious cognitive effects.


Assuntos
Terapia por Exercício/métodos , Hipóxia , Transtornos da Memória/etiologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/reabilitação , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Avaliação de Resultados em Cuidados de Saúde , Recuperação de Função Fisiológica , Estatísticas não Paramétricas , Aprendizagem Verbal/fisiologia , Adulto Jovem
19.
Front Physiol ; 5: 474, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25538627

RESUMO

The petrosal ganglion (PG) is a peripheral sensory ganglion, composed of pseudomonopolar sensory neurons that innervate the posterior third of the tongue and the carotid sinus and body. According to their electrical properties PG neurons can be ascribed to one of two categories: (i) neurons with action potentials presenting an inflection (hump) on its repolarizing phase and (ii) neurons with fast and brisk action potentials. Although there is some correlation between the electrophysiological properties and the sensory modality of the neurons in some species, no general pattern can be easily recognized. On the other hand, petrosal neurons projecting to the carotid body are activated by several transmitters, with acetylcholine and ATP being the most conspicuous in most species. Petrosal neurons are completely surrounded by a multi-cellular sheet of glial (satellite) cells that prevents the formation of chemical or electrical synapses between neurons. Thus, PG neurons are regarded as mere wires that communicate the periphery (i.e., carotid body) and the central nervous system. However, it has been shown that in other sensory ganglia satellite glial cells and their neighboring neurons can interact, partly by the release of chemical neuro-glio transmitters. This intercellular communication can potentially modulate the excitatory status of sensory neurons and thus the afferent discharge. In this mini review, we will briefly summarize the general properties of PG neurons and the current knowledge about the glial-neuron communication in sensory neurons and how this phenomenon could be important in the chemical sensory processing generated in the carotid body.

20.
Front Cell Neurosci ; 8: 158, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24999316

RESUMO

Satellite glial cells (SGCs) are the main glia in sensory ganglia. They surround neuronal bodies and form a cap that prevents the formation of chemical or electrical synapses between neighboring neurons. SGCs have been suggested to establish bidirectional paracrine communication with sensory neurons. However, the molecular mechanism involved in this cellular communication is unknown. In the central nervous system (CNS), astrocytes present connexin43 (Cx43) hemichannels and pannexin1 (Panx1) channels, and the opening of these channels allows the release of signal molecules, such as ATP and glutamate. We propose that these channels could play a role in glia-neuron communication in sensory ganglia. Therefore, we studied the expression and function of Cx43 and Panx1 in rat and mouse nodose-petrosal-jugular complexes (NPJcs) using confocal immunofluorescence, molecular and electrophysiological techniques. Cx43 and Panx1 were detected in SGCs and in sensory neurons, respectively. In the rat and mouse, the electrical activity of vagal nerve increased significantly after nodose neurons were exposed to a Ca(2+)/Mg(2+)-free solution, a condition that increases the open probability of Cx hemichannels. This response was partially mimicked by a cell-permeable peptide corresponding to the last 10 amino acids of Cx43 (TAT-Cx43CT). Enhanced neuronal activity was reduced by Cx hemichannel, Panx1 channel and P2X7 receptor blockers. Moreover, the role of Panx1 was confirmed in NPJc, because in those from Panx1 knockout mice showed a reduced increase of neuronal activity induced by Ca(2+)/Mg(2+)-free extracellular conditions. The data suggest that Cx hemichannels and Panx channels serve as paracrine communication pathways between SGCs and neurons by modulating the excitability of sensory neurons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...